白水的博客

欢迎你的光临,随便看看就好
私信 关注
白水baishui
码龄4年

天光乍破

  • 2,417,156
    被访问量
  • 256
    原创文章
  • 1,000
    作者排名
  • 13,241
    粉丝数量
  • 于 2017-06-16 加入CSDN
获得成就
  • 博客专家认证
  • 获得3,074次点赞
  • 内容获得1,260次评论
  • 获得3,558次收藏
荣誉勋章
兴趣领域
  • #人工智能
    #机器学习#PyTorch#Python
TA的专栏
  • 推荐系统
    3篇
  • RecSim
    1篇
  • 机器学习
    1篇
  • 机器学习
    19篇
  • 深度学习
    8篇
  • 强化学习
    6篇
  • 数据分析
    14篇
  • 数字图像处理
    12篇
  • 软件工程
    7篇
  • 数据库
    14篇
  • 编程语言
    1篇
  • C / C++
    30篇
  • Java
    10篇
  • ASP.NET
    10篇
  • Python
    23篇
  • 汇编
    2篇
  • Web
    1篇
  • 数学
  • 高等数学
    29篇
  • 概率统计
    14篇
  • 离散数学
    8篇
  • 算法与数据结构
    17篇
  • 计算机
    3篇
  • Android
    7篇
  • Windows
    8篇
  • Linux
    4篇
  • Nginx
    6篇
  • WampServer
    3篇
  • 疑难杂汇
    2篇
  • 文献
    4篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 课程
  • 帖子
  • 收藏
  • 关注/订阅

RL很简单,手把手带你入门强化学习

未开始
发布直播于 5 天前

RL真的很简单 手把手带你入门强化学习

文章目录1. 强化学习的应用场景1.1. 四个成熟场景1.2. 几个强化学习仿真环境1.2.1. Gridworld1.2.2. Neural MMOs1.2.3. Lab2. 强化学习的基础知识和常用术语2.1. 强化学习的目的2.2. 强化学习的过程2.3. 两个基本模型2.3.1. 多臂赌博机2.3.2. 马尔科夫决策过程2.4. 常用术语表3. 经典强化学习算法和深度强化学习4. 强化学习的学习资料1. 强化学习的应用场景1.1. 四个成熟场景在入门强化学习之前,我们先来具体的看看,目前强化学
原创
3758阅读
7评论
45点赞
发布博客于 5 天前

Anaconda找回默认源

Anaconda的默认源:https://repo.anaconda.com/pkgs/mainhttps://repo.anaconda.com/pkgs/rhttps://repo.anaconda.com/pkgs/msys2用法:conda config --add channels https://repo.anaconda.com/pkgs/mainconda config --add channels https://repo.anaconda.com/pkgs/rconda
原创
568阅读
1评论
28点赞
发布博客于 16 天前

强化学习算法分类汇总

文章目录1. Model-Free 与 Model-Based RL2. Policy-Based 与 Value-Based RL3. Monte-Carlo Update 与 Temporal-Difference Update RL4. On-Policy 与 Off-Policy RL1. Model-Free 与 Model-Based RL根据Agent是否理解其所处的环境,可以将强化学习方法分为:无模型的强化学习(Model-Free RL)和基于模型的强化学习(Model-Based R
原创
344阅读
0评论
2点赞
发布博客于 2 月前

用Python代码自动生成文献的IEEE引用格式

今天尝试着将引用文献的格式按照IEEE的标准重新排版,感觉手动一条一条改太麻烦,而且很容易出错,所以尝试着用Python写了一个小程序用于根据BibTeX引用格式来生成IEEE引用格式。先看代码,如下:import redef getIeeeJournalFormat(bibInfo): """ 生成期刊文献的IEEE引用格式:{作者}, "{文章标题}," {期刊名称}, vol. {卷数}, no. {编号}, pp. {页码}, {年份}. :return: {auth
原创
1333阅读
3评论
51点赞
发布博客于 2 月前

10款推荐系统仿真器(模拟平台)汇总和点评

文章目录1. RecoGym2. RecSim3. Lenskit4. Recommenderlab5. MyMediaLite6. Python-Recsys7. Waffles8. LightFM9. Sparrow RecSys10. Mahout11. GraphLab Create1. RecoGymRecoGym是一个侧重于强化学习的推荐系统模拟环境,它提供了一个统一的推荐框架,在这个框架中可以将经典推荐算法和强化学习方法结合使用,并且拥有离线和在线实验的功能,让推荐系统研究人员可以更好地把
原创
2274阅读
3评论
37点赞
发布博客于 2 月前

深度强化学习综述论文 A Brief Survey of Deep Reinforcement Learning

A Brief Survey of Deep Reinforcement Learning深度强化学习的简要概述作者:Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, Anil Anthony Bharath文章目录摘要 Abstract1. 引言 Introduction2. 奖励驱动行为 Reward-Driven Behavior2.1. 马尔科夫决策过程 Markov Decision Processes2.2. 强化学习的挑
翻译
410阅读
1评论
1点赞
发布博客于 3 月前

RecSim 可配置的推荐系统仿真平台 使用指南

RecSim是一个可配置平台,用于为自然支持顺序交互的推荐系统(RS)编写仿真环境 与用户。RecSim允许创建新的环境,该环境以抽象级别反映用户行为和项目结构的特定方面,非常适合在顺序交互式推荐问题中突破当前强化学习(RL)和RS技术的限制。可以轻松配置各种环境,这些环境可以改变以下假设:用户偏好和项目熟悉度;用户潜在状态及其动态;选择模型和其他用户响应行为。我们概述了RecSim如何为RL和RS研究人员和从业者提供价值,以及它如何充当学术与工业合作的工具。有关RecSim体系结构的详细说明,请阅读Ie等
原创
5064阅读
4评论
82点赞
发布博客于 3 月前

强化学习——表格法 Tabular Methods

本博客将介绍最简单的表格型方法(tabular methods)来讲解如何使用value-based方法求解强化学习过程。文章目录1. 马尔科夫决策过程 MDP1.1. 基于模型的马尔科夫决策过程 Model-based1.2. 无模型的马尔科夫决策过程 Model-free1.3. 基于模型与无模型的对比2. Q表格 Q-table3. 无模型预测 Model-free Prediction1. 马尔科夫决策过程 MDP强化学习有三个要素:状态、动作和奖励。强化学习Agent跟环境是一步一步交互.
原创
181阅读
0评论
1点赞
发布博客于 3 月前

从细节过渡到实例 一天学会Pytorch

文章目录1. 初识PyTorch1.1. 张量1.2 Numpy操作2 自动微分2.1 张量的自动微分2.2 梯度3 神经网络3.1 定义网络3.2 损失函数3.3 更新权重4 训练一个分类器4.1 读取CIFAR10数据,做标准化4.2 建立网络4.3 定义损失函数和优化器4.4 训练网络4.5 使用模型预测4.6 存取模型1. 初识PyTorch1.1. 张量(1)导入pytorch包import torch(2)创建一个5x3的空张量tensor = torch.empty(5, 3)
原创
1905阅读
1评论
70点赞
发布博客于 3 月前

一文入门推荐系统——推荐系统实践读书笔记

1. 推荐系统1.1. 什么是推荐系统1.2. 推荐系统评测1.2.1. 实验方法1.2.2. 评判指标1.2.3. 评判维度2. 数据来源2.1. 用户行为数据2.2. 用户标签数据2.3. 上下文信息2.3.1. 时间上下文信息2.3.2. 地点上下文信息2.4. 社交网络数据3. 通用推荐模型3.1. 协同过滤推荐3.1.1. 基于邻域的模型3.1.2. 隐语义模型3.1.3. 基于图的模型3.2. 基于内容的推荐3.3. 基于关联规则的推荐3.4. 基于知识的
原创
5780阅读
43评论
56点赞
发布博客于 3 月前

RecSys2020推荐系统论文Recommending the Video to Watch Next: An Offline and Online Evaluation at YOUTV.de

Recommending the Video to Watch Next: An Offline and Online Evaluation at YOUTV.de推荐下一个要看的视频:在YOUTV.de的在线和离线评估作者:Panagiotis Symeonidis, Free University of Bozen-Bolzano, Italy, panagiotis.Symeonidis@unibz.itAndrea Janes, Free University of Bozen-Bolza
翻译
516阅读
0评论
1点赞
发布博客于 4 月前

强化学习——马尔科夫决策过程 MDP

文章目录1. 马尔科夫过程 Markov Process,MP1.1. 马尔科夫性质 Markov Property1.2. 马尔科夫链 Markov Chain2. 马尔科夫反馈过程 Markov Reward Process,MRP3. 马尔科夫决策过程 Markov Decision Process,MDP马尔可夫决策过程是强化学习里面的一个基本框架,在马尔可夫决策过程的定义中,Agent所处的环境是 Fully Observable ,就是全部可以观测的。但是很多时候环境里面有些量是不可观测的,这
原创
3078阅读
2评论
38点赞
发布博客于 4 月前

强化学习——强化学习概述

本篇博客是对强化学习的基本概念进行解释,无深入的算法推导文章目录1.强化学习 Reinforcement Learning1.1. 强化学习的目的1.2. 强化学习的过程1.3. 强化学习的特点2. 序列决策过程 Sequential Decision Making2.1. 智能体(Agent)与动作空间(Action Spaces)2.1.1. 智能体 Agent2.1.1.1. 策略函数2.1.1.2. 价值函数2.1.1.3. 模型2.1.1.4. 智能体的分类2.1.2. 动作空间 Actio.
原创
853阅读
1评论
26点赞
发布博客于 4 月前

软考系统架构设计师历年真题及答案、题型归类

软件资格考试2009-2018年的真题及答案,以及综合知识题型归类,案例分析与论文部分必备知识点等,需要的小伙伴自行下载
zip
发布资源于 4 月前

英文文献调研方法综述

文章目录1. 进行英文文献调研的理由2. 文献调研的纲要2.1. 文献调研的目的2.2. 文献调研的原则2.3. 文献调研的步骤3. 常用的论文搜索平台及数据库3.1. Text Analyzer - JSTOR3.2. Web of Science3.3. Google Scholar3.4. CORE & DOAJ3.5. ProQuest3.6. Google Images & ScienceDirect Images4. 常用的数据搜索平台及数据库4.1. Research Data
原创
5148阅读
13评论
63点赞
发布博客于 5 月前

概率统计——重要术语及解释

1. 随机试验 Random Experiment 2. 样本空间与样本点 Sample Space & Sample Point 3. 基本事件、随机事件、必然事件、不可能事件 Elementary Event / Random Event / Certain Event / Impossible Event 4. 对立事件、互斥事件 Complementary Event / Mutually Exclusive Event
原创
493阅读
0评论
2点赞
发布博客于 6 月前

软考 系统架构设计师 2009-2018年英语翻译及重点词汇

文章目录2009年原文翻译重点词汇2010年原文翻译重点词汇2011年原文翻译重点词汇2012年原文翻译重点词汇2013年原文翻译重点词汇2014年原文翻译重点词汇2015年原文翻译重点词汇2016年原文翻译重点词汇2017年原文翻译重点词汇2018年原文翻译重点词汇2009年原文An architectural Style defines as a family of such systems in terms of a pattern、of structural organization.More
原创
2962阅读
52评论
29点赞
发布博客于 6 月前

m阶B树的非根非叶结点至少要ceil(m/2)个孩子原因

B树的定义中有一个规定:除根结点和叶结点之外,其他每个结点至少有⌈m2⌉\lceil\frac{m}{2}\rceil⌈2m​⌉个孩子,至少要有⌈m2⌉−1\lceil\frac{m}{2}\rceil-1⌈2m​⌉−1个关键字为什么要这样规定呢?我们假设现在有一棵深度为1的5阶B树:现在往B树中添加一个结点,在有限制的情况下是这样分裂的:如果没有对孩子结点和关键字个数进行限制,那么可以分裂出如下B树:可见,同样是5个关键字,有限制的5阶B树只有3个结点,而未进行限制的5阶B树却有4
原创
2586阅读
1评论
43点赞
发布博客于 7 月前

Session和Cookie的区别

Cookie和Session都用于存储信息。它们最主要的区别在于Cookie存储在客户端计算机上,而Session则存储在服务器上。SessionSession在服务器上的临时目录中创建一个文件,该文件用于存储已注册的Session变量。在访问期间,Session变量数据将可用于网站上的所有页面。当用户关闭浏览器或离开网站后,Session将立即终止,如果用户没有关闭浏览器或离开网站,那么服务器将也会在预定的时间段(通常为30分钟)后终止Session。CookieCookie是存储在客户端计算机上
原创
1617阅读
41评论
78点赞
发布博客于 10 月前

Visual Studio 版本号及其各个版本对应关系

产品名称代码名称版本号最新更新版本发布日期最新更新日期结束支持日期支持的.NET Framework支持的.NET CoreVisual Studio 2019Dev161616.6.02019年4月2日2020年5月19日2029年4月10日3.5-4.82.1,2.2,3.0,3.1Visual Studio 2017Dev151515.9.232017年3月7日2020年5月19日2027年4月13日3.5-4.7.21.0-1....
原创
4343阅读
4评论
31点赞
发布博客于 10 月前

ASP.NET 用户和角色管理 附加代码详解

文章目录1. 身份验证和授权1.1. 身份验证1.2. 授权2. 登录控件2.1. CreateUserWizard控件2.2. Login控件2.3. LoginName控件2.4. LoginStatus控件2.5. LoginView控件2.6. changePassword控件2.7. PasswordRecovery控件1. 身份验证和授权1.1. 身份验证1.2. 授权2. 登...
原创
1557阅读
22评论
18点赞
发布博客于 11 月前

软件工程导论—软件测试

1. 软件测试基础2. 单元测试3. 集成测试4. 确认测试5. 白盒测试技术6. 黑盒测试技术7. 调试8. 软件可靠性
原创
9821阅读
33评论
103点赞
发布博客于 1 年前

用Python模拟一个区域广播通信网络 2020年4月认证杯数学建模比赛代码

2020 年“认证杯”数学中国数学建模网络挑战赛第一阶段B题博主参加了2020 年“认证杯”数学中国数学建模网络挑战赛,选择了这个题目,获得了第一阶段的二等奖,不想参加第二阶段了,代码放在这里,有需要的就参考一下吧。题干:考虑这样的一个无线网:每个通信节点都是低功率的发射器,并且在进行着空间上的低速连续运动 (无法预知运动方向及其改变的规律),所以对一个节点而言,只有和它距离在一定范围之内的节点才能收到它的信号,而且节点会 (在未声明的情况下) 相互接近或远离。每个节点需要不定期地、断续地发送信息.
原创
2191阅读
12评论
12点赞
发布博客于 1 年前

软件工程导论—详细设计

1. 结构程序设计2. 人机界面设计3. 过程设计工具4. 面向数据结构的设计方法5. 程序复杂程度的定量度量
原创
3243阅读
18评论
23点赞
发布博客于 1 年前

软件工程导论—总体设计

1. 设计过程2. 设计原理3. 启发规则4. 描绘软件结构的图形工具5. 面向数据流的设计方法
原创
2312阅读
9评论
12点赞
发布博客于 1 年前

SQL 事务与锁 详解

本篇博客旨在记录数据库中事务与锁机制的必要性,记录了如何在数据库中使用事务与锁机制实现数据库的一致性以及并发性。文章目录1. 事务机制1.1. 事务是什么1.2. 事务的必要性1.3. 在MySql中关闭自动提交 autocommit1.4. 回滚 rollback 与 保存点 savepoint1.5. 提交 commit1.6. 事务2. 锁机制3. 事务的ACID特性4. 事务与锁机制...
原创
2330阅读
11评论
16点赞
发布博客于 1 年前

软件工程导论—需求分析

文章目录1. 需求分析概述1.1. 软件需求的概念1.2. 需求分析的准则1.3. 需求分析的任务和步骤2. 需求获取的常用方法和步骤3. 分析建模3.1. 结构化分析模型3.1.1. 结构化分析模型概述3.1.2.实体联系图 E-R图3.1.3.数据流图 DFD3.2. 面向对象分析模型4. 软件需求说明5. 结构化分析方法6. 面向对象分析方法1. 需求分析概述1.1. 软件需求的概念软...
原创
1150阅读
5评论
4点赞
发布博客于 1 年前

软件工程导论—可行性研究

文章目录1. 可行性研究的任务2. 可行性研究过程2.1. 可行性研究的主要步骤3. 系统流程图4. 数据流图 Data Flow Diagram,DFD5. 数据字典 Data Dictionary,DD6. 成本/效益分析7. 小结1. 可行性研究的任务可行性研究实质上是要进行一次简化了的系统分析和设计的过程,也就是在较高层次上以较抽象的方式进行的系统分析和设计的过程。并非任何问题都有简...
原创
3673阅读
21评论
26点赞
发布博客于 1 年前

软件工程导论—软件与软件工程

文章目录1. 软件与软件危机1.1. 软件的概念和特点1.2. 软件规模的分类与发展阶段1.3. 软件危机1.3.1. 软件危机的表现1.3.2. 软件危机产生的原因1.3.3. 软件危机如何解决2. 软件工程学2.1. 软件工程学的概念2.2. 软件工程项目的基本目标2.3. 软件工程的八项原则2.4. 软件工程的本质特征2.5. 软件工程的七条基本原理3. 软件工程方法学3.1. 软件工程方法...
原创
1394阅读
22评论
21点赞
发布博客于 1 年前

ASP.NET 数据绑定详解 代码+步骤

文章目录1. 数据绑定概述2. 简单数据绑定2.1. 属性绑定2.2. 表达式绑定2.3. 集合绑定2.4. 方法绑定3. 数据控件绑定3.1. ListControl 控件3.2. GridView 控件3.2.2. 使用GridView控件绑定数据源3.2.3. 自定义GridView控件的列字段名3.2.4. 使用GridView控件分页显示数据3.3. DataList 控件3.3.1. ...
原创
754阅读
21评论
20点赞
发布博客于 1 年前

在ASP.NET中使用ListView控件对数据进行显示、分页和排序

最终效果图如下所示:使用ListView控件是不需要写代码的,下面我们来看一下ListView的操作流程:1、首先新建一个ASP窗体2、然后拖入一个ListView和一个SqlDataSource3、选中SQLDataSource,点击配置数据源,然后点击新建连接4、然后配置SQL Server服务器名、登录方式和要连接到的数据库,点击确定5、点击下一步,再下一步,然后选择要...
原创
384阅读
1评论
3点赞
发布博客于 1 年前

在ASP.NET中分页显示DataList控件中的数据

效果图:所用的数据库是这个样子的:代码,分别是.aspx文件和.aspx.cs文件,自行复制粘贴使用,注意如果要匹配自己的数据库就要修改数据库连接以及字段名:Default.aspx<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs" Inherits="_Default" %>&...
原创
297阅读
2评论
3点赞
发布博客于 1 年前

在ASP.NET中实现选中、编辑和删除GridView数据项

先上效果图:代码,分别是.aspx文件和.aspx.cs文件,自行复制粘贴使用:Default.aspx<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs" Inherits="_Default" %><!DOCTYPE html PUBLIC "-//W3C//DTD XH...
原创
2829阅读
9评论
65点赞
发布博客于 1 年前

ASP.NET 使用语言集成查询 LINQ进行数据访问

文章目录1. LINQ基础1.1. LINQ概述1.2. LINQ查询1.3. 使用var创建隐性局部变量1.4. Lambda表达式的使用2. LINQ查询表达式2.1. 获取数据源 from2.2. 数据库操作2.2.1. 筛选 where2.2.2. 排序 orderby2.2.3. 分组 group by2.2.4. 联接 join2.2.5. 选择/投影 select3.使用LINQ操作...
原创
365阅读
1评论
3点赞
发布博客于 1 年前

ADO.NET 数据库访问技术 以SQL Server为例详解

文章目录1. ADO.NET概述1.1. ADO.NET 对象模型1.2. 数据访问命名空间2. Connection数据连接对象2.1. Connection对象2.2. 数据库连接字符串2.3. 应用SQLConnection对象连接数据库3. Command命令执行对象3.1. Command对象3.2. 应用Command对象操作数据3.3. 应用Command对象调用存储过程4. Dat...
原创
1079阅读
24评论
31点赞
发布博客于 1 年前

SQL 函数 function 讲解+代码实例

文章目录1. 对存储程序的说明2. 创建函数 create function3. 调用函数 select4. 查看函数4.1. 查看函数状态 show status4.2. 查看函数定义 show create4.3. 查看全部函数信息 information_schema.Routines5. 修改函数 alter6. 删除函数 drop1. 对存储程序的说明与应用程序(Java或者.NET...
原创
952阅读
25评论
28点赞
发布博客于 1 年前

SQL 存储过程和函数的对比、变量、条件和处理程序、游标、流程控制详解+代码示例

文章目录1. 存储过程和函数在实际项目中的使用2. 存储过程与函数的比较2.1. 共同点2.2. 不同点3. 变量的定义和使用3.1. 变量的定义3.1.1. 定义局部变量 declare3.1.2. 定义全局变量 set @3.1.3. 修改变量的值 set3.1.4. 将查询结果赋给变量 select into1. 存储过程和函数在实际项目中的使用存储过程和函数是SQL中非常实用的功能,它...
原创
651阅读
17评论
20点赞
发布博客于 1 年前

SQL 触发器详解及代码演示

文章目录1. 触发器的作用2. 创建触发器3. 查看触发器3.1. show语句查看触发器3.2. information.schema表查看触发器4. 删除触发器5. 使用限制1. 触发器的作用触发器主要用于监视某个表的insert、update以及delete等更新操作,这些操作可以分别激活该表的insert、update或者delete类型的运行语句,从而实现数据的自动维护。2. 创建...
原创
1238阅读
9评论
11点赞
发布博客于 1 年前

SQL 存储过程 procedure 讲解+代码实例

文章目录1. 存储过程和函数在实际项目中的使用2. 存储过程与函数的比较2.1. 共同点2.2. 不同点3. 存储过程 Stored Procedure3.1. 存储过程概述3.1.1. 存储过程的优点3.1.2. 存储过程的缺点3.2. 创建存储过程 create procedure3.3. 调用存储过程 call3.4. 查看存储过程的定义3.5. 修改存储过程 alter procedure...
原创
845阅读
3评论
5点赞
发布博客于 1 年前

ASP.NET中HTTP请求(Request)、响应(Response)以及状态管理讲解

文章目录1. HTTP请求 Request对象1.1. Request对象常用属性和方法1.2. 获取页面间传送的值1.3. 获取客户端浏览器相关信息2. HTTP响应 Response对象2.1. Response对象常用属性和方法2.2. 在页面中输出指定信息数据2.3. 页面跳转并传递参数3. Server对象3.1. Server对象常用属性和方法3.2. 获取服务器的物理地址3.3. 对...
原创
1735阅读
10评论
16点赞
发布博客于 1 年前

SQL 如何建立索引来加快数据库的查询

文章目录1. 什么是索引2. 索引的特点3. 索引的分类3.1. 普通索引3.2. 唯一索引(unique)3.3. 主键索引(primary key)3.4. 单列索引3.5. 组合索引3.6. 全文索引(fulltext)3.7. 空间索引(spatial)4. 索引的设计原则5. 创建索引5.1. 自动创建索引5.2. 手动创建索引5.2.1. 创建表时创建索引5.2.2. 在已经存在的表上...
原创
3105阅读
5评论
16点赞
发布博客于 1 年前

ASP.NET验证控件合集 含代码演示

文章目录1. 窗体验证概述2. ASP.NET中的数据验证控件2.1. RequiredFieldValidator控件2.2. CompareValidator控件2.3. RangeValidator控件2.4. RegularExpressionValidator控件2.5. CustomValidator控件2.6. ValidationSummany控件1. 窗体验证概述为了提高WE...
原创
2406阅读
13评论
24点赞
发布博客于 1 年前

全网最全面的ASP.NET标准控件介绍及代码演示

文章目录1. ASP.NET 页面处理事件1.1. 事件与生命周期1.2. IsPostBack属性服务器控件文本类型控件按钮类型控件链接类型控件选择类型控件Image图像控件Panel容器控件FileUpload文件上传控件1. ASP.NET 页面处理事件1.1. 事件与生命周期一个ASP.NET页面有自己的生命周期,它的生命周期是通过按照一定的顺序执行相应的事件来进行控制的页...
原创
1633阅读
12评论
25点赞
发布博客于 1 年前

SQL 查询表中每门课程成绩最好的前n名学生 优于group by语句的方法

假设有表score记录学生id(student_id)、课程id(course_id)和课程分数(score)要求查询表中每门课程成绩最好的前2名学生的id、相应课程id和分数。则可以用如下sql语句select * from score score1 where( select count(1) from score score2 where score1.course_id =...
原创
1095阅读
5评论
11点赞
发布博客于 1 年前

SQL 单表查询

文章目录说明和表结构一些说明表结构1. 基本查询操作1.1. 基本语法1.2. 查询所有数据1.3. 给字段取别名1.4. 消除重复1.4. 运算符1.5. 常用函数1.5.1. 字符串函数1.5.2. 数值函数1.5.3. 日期和时间函数1.5.4. 流程函数1.5.5. 其他常用函数说明和表结构一些说明本文中所有中括号扩起的文字均代表可以替换的文字(包括中括号本身)例如在我博客中的:...
原创
1637阅读
17评论
24点赞
发布博客于 1 年前

UML 统一建模语言

UML 统一建模语言,被广泛认可的图形化建模标准,它可以帮助开发人员在面向对象设计(OOAD)过程中标识元素、构建模块、分析过程,并可以通过文档来注明系统中的重要细节...
原创
3487阅读
96评论
58点赞
发布博客于 1 年前

钉钉自动点赞 脚本 适用Android

首先下载ADB并配置好环境变量,可以参考这一批博客:ADB工具下载安装然后打开手机的开发者模式,要注意不同手机打开开发者模式的方法不一样,仅拿我手里的oppo举例,步骤是:设置 -> 关于手机 -> 连续点击"版本号"7次 -> 提示开发者模式打开 -> 回到"设置" -> 其他设置 -> 开发者选项 ->打开"开发者选项"和"USB调试"然后...
原创
12562阅读
15评论
20点赞
发布博客于 1 年前
MultipartUploadRequest 无法从Android传递信息到服务器的一种情况
发布Blink于 1 年前

Windows定时任务 每隔一段时间(最小到秒级)执行一次指定的Python脚本

首先是创建一个Windows定时任务,并且设置它每天执行一次指定的Python脚本参考以下两篇博客进行:Window系统创建定时任务 定时执行任务Windows定时任务 执行python脚本文件 *.py关于创建Windows定时任务执行python脚本,上面两篇博客的作者已经写得非常清楚了,但是我的需求是让该定时任务每隔5分钟执行一次,于是我在上面两篇博客的基础上进行了如下设置:1、首...
原创
8344阅读
12评论
14点赞
发布博客于 1 年前

MultipartUploadRequest 无法从Android传递信息到服务器的一种情况

Cleartext HTTP traffic to 47.106.155.237 not permitted原因:解决:wamp3 本地配置httpsfailed to connect to /47.106.155.237 (port 443) from /192.168.31.126 (port 42446) after 15000ms
原创
600阅读
0评论
4点赞
发布博客于 1 年前

WampServer 3 访问403 Forbidden You don't have permission to access this resource 解决

大多数百度到的答案仅适用于WampServer3以下的版本,这里我介绍一种使用与WampServer3版本解决方案问题:安装好WampServer3后无法通过公网IP进行访问,出现403 Forbidden错误解决方案:首先左键单击右下角WampServer3的图标(绿色的),然后依次找到httpd-vhosts.conf,注意不是httpd.conf,因为WampServer3中预定义了虚...
原创
2748阅读
2评论
7点赞
发布博客于 1 年前

WAMP localhost/phpmyadmin 无法进入

安装wamp后,若遇到在浏览器地址栏输入localhost/phpmyadmin却无法进入,首先看一看右下角的wamp程序的图标是红色还是绿色(正常运行状态),如果是红色,右键点击它,再点击Tools->test 80 port如果出现Your port 80 is actually used by....那就只需要重新启动wamp即可。如果出现Your port 80 see...
原创
596阅读
0评论
3点赞
发布博客于 1 年前

Android HorizontalScrollView 横向滚动自动居中

在使用HorizontalScrollView我们常常需要让点击的view自动居中,可以用smoothScrollTo(x,y)或者scrollTo(x,y)来实现这两个方法效果是一样的,只不过smoothScrollTo(x,y)是平滑移动,scrollTo(x,y)是直接跳过去需要注意的是这两个方法是相对于HorizontalScrollView控件的左边缘(如果是竖向则是上边缘)进行偏移...
原创
994阅读
0评论
4点赞
发布博客于 1 年前

使用camera2设置全屏TextureView却不显示为全屏的解决办法

找到自己TextureView的onMeasure()方法,如果使用的是官方demo,那代码应该如下:@Overrideprotected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) { super.onMeasure(widthMeasureSpec, heightMeasureSpec); int ...
转载
2097阅读
50评论
32点赞
发布博客于 1 年前

Android调用相机时找不到android.support.v4.content.FileProvider unresolved package 'content'

在AndroidManifest.xml的application中添加provider时提示unresolved package ‘content’<provider <!-- 下一行代码报错 unresolved package 'content' --> android:name="android.support.v4.content.FileProvide...
原创
3943阅读
0评论
6点赞
发布博客于 1 年前

Servlet—HttpServletRequest与HttpServletResponse对象常用方法

HttpServletRequest方法说明示例setCharacterEncoding("编码类型")请求数据的字符编码设置为“编码类型”request.setCharacterEncoding("utf-8")getParameter("name")请求获取名称为“name”的数据request.getParameter("name")getPara...
原创
677阅读
0评论
3点赞
发布博客于 2 年前

CSDN震惊部?

发布Blink于 2 年前

关系数据库之关系代数

1 传统的集合运算1.1 并 union1.2 差 except1.3 交 intersection1.4 笛卡尔积 cartesian product2 专用的集合运算2.1 选择 selection2.2 投影 projection2.3 连接 join2.4 除 division...
原创
564阅读
2评论
3点赞
发布博客于 2 年前

如何防范爬虫?看完这篇文章就会了

你被爬虫侵扰过么?当你看到“爬虫”两个字的时候,是不是已经有点血脉贲张的感觉了?千万要忍耐,稍稍做点什么,就可以在名义上让他们胜利,实际上让他们受损失。
原创
1337阅读
24评论
26点赞
发布博客于 2 年前

Tkinter的Text控件如何给文本换行?

有python代码:window = tk.Tk()t = tk.Text(window2, height=15, width=65)button = tk.Button(window,text='获 取 IP', command=getIP,width=15, height=2)def getIP(): # randomIP()的作用是从数据库获取一个ip地址 IP = t...
原创
6975阅读
4评论
8点赞
发布博客于 2 年前

二进制浮点数的加减法运算

二进制浮点数的规格化表示形式定义为N=2E⋅MN=2^E·MN=2E⋅M其中MMM称为尾数,EEE称为阶码例如二进制浮点数11.011011的规格化表示形式为:2+0010×0.110110112^{+0010}×0.110110112+0010×0.11011011该浮点数在计算机中存储为:00100011011011各个二进制位代表的含义为:阶符E | 阶码E | 尾符M | 尾码M...
原创
4751阅读
1评论
11点赞
发布博客于 2 年前

Pytorch 搭建RNN循环神经网络用sin曲线拟合cos曲线

import torchimport numpy as npimport torch.nn as nnfrom torch.autograd import Variableimport matplotlib.pyplot as plttorch.manual_seed(1)steps = np.linspace(0, np.pi*2, 100, dtype=np.float32)...
原创
656阅读
3评论
5点赞
发布博客于 2 年前

Pytorch 搭建卷积神经网络CNN和循环神经网络RNN在GPU上预测MNIST数据集

import torchimport torch.nn as nnfrom torch.autograd import Variableimport matplotlib.pyplot as pltimport torch.utils.data as Dataimport torchvision# 下载MNIST数据集DOWNLOAD_MNIST = Truetrain_data...
原创
880阅读
3评论
6点赞
发布博客于 2 年前

Pytorch 保存和提取训练好的神经网络

在pytorch中,保存神经网络用方法:torch.save(net, 'net.pkl')提取神经网络用方法:torch.load('net.pkl')保存神经网络有两种方式:1、保存整个网络torch.save(net, 'net.pkl')这种方法能最大程度的保留网络的所有信息,缺点是读取网络时速度稍慢2、保存网络的状态信息torch.save(net.state_d...
原创
4099阅读
1评论
6点赞
发布博客于 2 年前

Pytorch 搭建分类回归神经网络并用GPU进行加速

import torchimport torch.nn.functional as Ffrom torch.autograd import Variableimport matplotlib.pyplot as plt# 构造数据x = torch.unsqueeze(torch.linspace(-1,1,100), dim=1)y = x.pow(2) + 0.2*torch.r...
原创
923阅读
1评论
3点赞
发布博客于 2 年前

数学形态学处理—膨胀腐蚀与开闭运算

对图像进行分析时,往往是把图像进行分割,并用其二值图像进行分析,对二值图像首先要提取目标物,然后对不同目标物的特征差异进行描述与计算,最后获得所需要分析的结果在提取目标物的过程中存在以下难题:提取的目标中存在伪目标在多目标的情况下存在粘连和断裂多个目标形态不同要解决上述问题,就需要运用数学形态学的一些方法,腐蚀与膨胀是形态学处理的基础,许多形态学算法都是在这两种运算的基础上进行拓展的...
原创
2573阅读
1评论
6点赞
发布博客于 2 年前

自然常数e与重要极限

无理数eee,又称自然常数,是一个人为定义的数,约等于2.71828,我们在很多地方都能看到它的身影,如欧拉方程、自然对数中等等。定义eee的定义式为:lim⁡x→∞(1+1x)x=e\lim_{x \to \infty}(1 + \frac{1}{x})^x = ex→∞lim​(1+x1​)x=e该式是两个重要极限中的其中一个,要理解该定义式的由来,就不得不先介绍一下指数增长模型指数增长...
原创
8558阅读
2评论
18点赞
发布博客于 2 年前

图像分割—基于区域的图像分割

基于区域的分割是以直接寻找区域为基础的分割技术,实际上类似基于边界的图像分割技术一样利用了对象与背景灰度分布的相似性。大体上基于区域的图像分割方法可以分为两大类:区域生长法区域分裂与合并1 区域生长法根据一定的准则将像素或子区域聚合城更大区域的过程。区域生长法的关键在于选取合适的生长准则,不同的生长准则会影响区域生长的过程、结果。生长准则可根据不同的原则制定,大部分区域生长准则使用图...
原创
9234阅读
1评论
9点赞
发布博客于 2 年前

图像分割—基于边界的图像分割

边界对图像来说是至关重要的信息,人可以仅通过图像边缘、轮廓就能对图像整体产生较完整的认识,例如漫画、简笔画等待。基于边界的图像分割技术是基于灰度不连续性进行的分割方法,其基础就是边缘检测边缘检测利用梯度、差分、拉普拉斯算子及高通滤波等处理方法进行图像锐化,增强图像边缘,再进行一次阈值化处理,便可以将边缘增强的方法用于边缘检测常用的边缘检测算子:梯度算子∇f=[GxGy]=[∂F∂x∂F...
原创
4966阅读
2评论
10点赞
发布博客于 2 年前

图像分割—灰度阈值分割

阈值分割概念图像阈值分割具有直观和易于实现的特点,在图像分割应用中占有重要地位。许多情况下,图像$f(x,y)$由暗对象和亮对象这两类具有不同灰度级的区域组成,如报纸和书本。这种图像的亮暗部分可以在直方图中清楚的分辨出,故可选择一个阈值用于将亮暗峰区分开...
原创
9936阅读
1评论
10点赞
发布博客于 2 年前
国外常用浏览器User-Agent汇总 - 白水的博客 - CSDN博客
发布Blink于 2 年前

用Python画一个LOVE YOU

发布Blink于 2 年前

图像增强—频域增强技术

在频域中,变换系数反映了某些图像的特征。如频谱的直流分量比例于图像的平均亮度、噪音对应于频率较高的区域、图像实体对应于频率较低的区域频域增强原理在频谱中,图像中心处对应了图像中变化较平缓的区域,四周对应了图像边缘、噪音或者变化陡峭的部分。因此我们可以将代表了图像边缘、噪音或者变化陡峭的高频率成分滤除掉,只留下变化平缓的低频率成分,再由频域变换回时域,这就相当于对图像进行了平滑处理;相反,若滤去...
原创
3150阅读
1评论
4点赞
发布博客于 2 年前

图像增强—彩色增强技术

肉眼对色彩的辨别人的肉眼可分辨的灰度级在十几到二十几之间,却能区分几千种不同色度、不同亮度的色彩。可以说人眼对彩色的分辨力可以达到灰度分辨力的百倍以上。将灰度图像转换为彩色图像,或改变已有彩色的分布,会改善图像的可视性,是从可视角度实现图像增强的有效方法之一。彩色增强技术目前彩色增强技术分为两大类:伪彩色处理(pseudo color):把灰度图像处理成伪彩色图像假彩色处理(fals...
原创
5105阅读
3评论
4点赞
发布博客于 2 年前

图像增强—图像锐化

图像锐化与图像平滑是相反的操作,锐化是通过增强高频分量来减少图像中的模糊,增强图像细节边缘和轮廓,增强灰度反差,便于后期对目标的识别和处理。锐化处理在增强图像边缘的同时也增加了图像的噪声。方法通常有微分法和高通滤波法。图像细节的灰度变化特性取图像中的某一行作为扫描行,其灰度变化曲线为:
原创
19823阅读
8评论
43点赞
发布博客于 2 年前

matplotlib 绘制一个灰度直方图

matplotlib 绘制一个灰度直方图
原创
1606阅读
34评论
2点赞
发布博客于 2 年前

matlab 神经网络工具箱 nntraintool 详解

概览Neural Network该部分展示了神经网络的结构,从结构图中可以看出该网络有三个隐含层,神经元个数分别为9个、8个、7个Algorithms该部分展示了该网络所使用的训练算法,可以看出Data Division:该网络采用随机划分的方法将数据集划分为training set、validation set、test setTraining:该网络采用Levenberg–Mar...
原创
7519阅读
3评论
29点赞
发布博客于 2 年前

图像增强—空域平滑

图像噪声图像噪声是指图像在摄取或传输过程中所受到的随机干扰信号,通常分为内部噪声和外部噪声在图像处理过程中通常会接触到三类噪声:椒盐噪声:含有随机出现的黑白强度值,通常呈点状,不形成大的连通域脉冲噪声:只含有随机的白强度(正脉冲)噪声或黑强度(负脉冲)噪声高斯噪声:含有强度服从高斯分布的噪声图像平滑图像平滑的目的是改善图像质量,尽量消除噪声对图像带来的影响...
原创
671阅读
0评论
0点赞
发布博客于 2 年前

频域滤波—方波变换中的沃尔什变换与哈达玛变换

沃尔什变换沃尔什变换是由+1或-1的基本函数的级数展开而成的,满足完备正交特性,属于方波型正交变换。由于沃尔什函数是二值正交函数,与数字逻辑中的两个状态相对应,因此它更适用于计算机技术、数字信号处理一维沃尔什变换N=2nN=2^nN=2n哈达玛变换与沃尔什变换类似,由哈达玛变换核组成的矩阵是一个正交对称矩阵,属于方波型正交变换,不同之处在于其行、列次序不一样。...
原创
1951阅读
2评论
2点赞
发布博客于 2 年前

国外常用浏览器User-Agent汇总

CSV文件,一共收录9529条User-Agent,可直接导入数据库网盘链接: https://pan.baidu.com/s/1iRFquicX-hH99ymopibNzA 提取码: unqd内容示例:idagent……1411Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML...
原创
3432阅读
14评论
20点赞
发布博客于 2 年前

AgentTable.csv

内含9000余条国外浏览器user-agent信息,csv文件,可直接导入数据库
csv
发布资源于 2 年前

频域滤波—离散余弦变换

离散余弦变换DCT傅里叶变换的参数是复数,在数据的描述上相当于实数的两倍,若仅用实函数对称延拓成一个实偶函数,则其傅里叶变换也为实偶函数且仅包含余弦项,连续函数和离散函数的余弦变换都是基于这个原理。离散余弦变换是傅里叶变换的一个简化,本质上仍然是傅里叶变换,常常用在数据压缩中。一维离散余弦变换给定实信号序列{f(x)∣x=0,1,...,N−1}\{f(x) | x=0,1,...,N-1\...
原创
2191阅读
0评论
1点赞
发布博客于 2 年前

频域滤波—傅里叶变换

傅里叶变换的作用离散傅里叶变换是最经典的一种正弦余弦型正交变换,它建立了空间域与频率域间的联系,具有明确的物理意义,能够更直观、方便地解决许多图像处理问题。而且具有快速算法,因此广泛应用于图像处理等各个领域。傅里叶变换的定义狄里赫莱条件函数在任意有限区间内连续或只有有限个第一类间断点在单个周期内函数仅有限个极值点在单个周期内函数绝对可积只有满足狄里赫莱条件的周期函数才存在傅里叶变...
原创
5314阅读
4评论
8点赞
发布博客于 2 年前

频域滤波—正交变换

图像正交变换的本质图像是由许多点* 冲激函数的累加,图像通过处理系统的效果就是每一点冲激函数通过处理系统的效果之和。同时任何图像都可以分解为基图像之和,基图像之间是相互正交的,图像正交变换的本质就是寻找合适的基图像来表达图像。图像的正交变换一般分为三大类:正弦余弦型变换方波型变换基于特征向量的变换冲激函数通常也称冲激、δ\deltaδ函数或狄克拉δ\deltaδ函数,实际上冲激函...
原创
1256阅读
3评论
2点赞
发布博客于 2 年前

使用maven构建项目报错Cannot change version of project facet Dynamic Web Module to 3.0解决方案

报错Description Resource Path Location TypeCannot change version of project facet Dynamic Web Module to 2.5. web-test line 1 Maven Java EE Configuration ProblemOne or more constraints have not been...
原创
305阅读
2评论
5点赞
发布博客于 2 年前

Ubuntu 18.04 安装显卡驱动连接错误解决方案

我的步骤:依次执行:sudo add-apt-repository ppa:graphics-drivers/ppasudo apt-get updateubuntu-drivers devicessudo ubuntu-drivers autoinstall但是在这个执行sudo ubuntu-drivers autoinstall提示连接错误:错误:1 http://pp...
原创
6140阅读
3评论
3点赞
发布博客于 2 年前

集合论—等价关系与偏序关系

等价关系等价关系的定义定义:设RRR为非空集合AAA上的关系,若RRR是自反的、对称的和传递的,则称RRR为AAA上的等价关系。对任何x,y∈Ax,y\in Ax,y∈A,若&lt;x,y&gt;∈R&lt;x,y&gt;\in R<x,y>∈R,则记作x∼yx\sim yx∼y例:若有A={1,2,...,8}A=\{1,2,...,8\}A...
原创
2598阅读
0评论
8点赞
发布博客于 2 年前

集合论—关系的自反、对称和传递闭包

关系的自反、对称和传递闭包定义设R\text{R}R是非空集合AAA上的关系,R\text{R}R的自反(对称、传递)闭包是AAA上的关系R′\text{R}&#x27;R′,且R′\text{R}&#x27;R′满足以下条件:R′\text{R}&#x27;R′是自反(对称、传递)的R⊆R′\text{R}\subseteq\text{R}&#x27;R⊆...
原创
10958阅读
1评论
8点赞
发布博客于 2 年前

集合论—关系的运算和性质

关系关系是一个有序对集合或空集合,关系之间做运算以后依然是关系。关系的定义域(domR\text{dom} RdomR),值域(ranR\text{ran} RranR)和域(fldR\text{fld} RfldR)domR={x∣∃y(&lt;x,y&gt;∈R)}\text{dom} R = \{x | \exist y(&lt;x,y&gt;\in R...
原创
1835阅读
2评论
6点赞
发布博客于 2 年前

集合论—笛卡尔积与二元关系

笛卡尔积笛卡尔积的定义设AAA、BBB为集合,用AAA中的元素作为第一元素,BBB中的元素作为第二元素,构成有序对。所有这样的有序对组成的集合称作AAA和BBB的笛卡尔积,记作A×BA×BA×B.A×B={&lt;x,y&gt;∣x∈A,y∈B}A×B=\{&lt;x,y&gt;|x\in A, y\in B\}A×B={<x,y>∣x∈A,y∈B}...
原创
3580阅读
2评论
6点赞
发布博客于 2 年前

集合论—集合中元素的计数

集合A={1,2,...,n}A=\{1,2,...,n\}A={1,2,...,n},它含有nnn个元素,可以说这个集合的基数是nnn,记做cardAcard AcardA
原创
607阅读
0评论
1点赞
发布博客于 2 年前

集合论—集合的基本运算与主要算律

给定集合AAA和BBB,可以通过集合的并(∪)(\cup)(∪)、交(∩)(\cap)(∩)、相对补(−)(-)(−)、绝对补(∼)(\sim)(∼)和对称差(⊕)(\oplus)(⊕)等运算产生新的集合。并集A∪BA\cup BA∪BA∪B={x∣x∈A∨x∈B}A\cup B = \{x|x\in A\lor x\in B\}A∪B={x∣x∈A∨x∈B}可以把nnn个集合的并集简记为⋃...
原创
1448阅读
0评论
1点赞
发布博客于 2 年前

数理逻辑—一阶逻辑等值式与前束范式

等值式定义:设AAA、BBB是一阶逻辑的两公式,若A↔BA\leftrightarrow BA↔B为逻辑有效式(永真式),则称AAA与BBB是等值的,记做A⇔BA\Leftrightarrow BA⇔B,称A⇔BA\Leftrightarrow BA⇔B为等值式。五种重要等值式等值式类型等值式24个重要等值式24个重要等值式量词否定等值式¬∀xA(x)⇔∃x¬A...
原创
4369阅读
1评论
10点赞
发布博客于 2 年前

数理逻辑—推理理论

1 推理的通俗解释推理是从前提推出结论的思维过程,前提是指已知的命题公式,结论是指从前提出发应用推理规则推出的命题公式,当推理正确且前提也正确时,结论一定正确。2 构造证明法——证明推理正确的方法之一构造证明法是按照给定的规则进行,其中有些规则建立在推理定律(即重言蕴含式)的基础之上。推理定律:推理定律名称A⇒(A∨B)A\Rightarrow(A\lor B)A⇒(...
原创
1697阅读
2评论
5点赞
发布博客于 2 年前

数理逻辑—范式

简单析取式与简单合取式定义:仅由有限个命题变项或其否定构成的析取式称为简单析取式。仅由有限个命题变项或其否定构成的合取式称为简单合取式。例如:ppp、¬p\lnot p¬p、p∨qp\lor qp∨q、p∨¬qp\lor\lnot qp∨¬q、¬p∨q∨r\lnot p\lor q\lor r¬p∨q∨r等都是简单析取式;ppp、¬p\lnot p¬p、p∧qp\land qp∧q、p∧...
原创
1102阅读
0评论
5点赞
发布博客于 2 年前

数理逻辑—24个(16组)重要等值式

双重否定律(双重否定表肯定): ¬¬A&ThickSpace;⟺&ThickSpace;A\lnot\lnot A \iff A¬¬A⟺A等幂律(一件事情说两遍):A∨A&ThickSpace;⟺&ThickSpace;AA\lor A \iff AA∨A⟺AA∧A&ThickSpace;⟺&ThickSpace;AA\land A \iff...
原创
6041阅读
2评论
13点赞
发布博客于 2 年前

数理逻辑—命题公式及其赋值与分类

由联结词和多个命题常项可以组成复合命题,若是有联结词和多个命题变项则可以组成命题公式。更具体的说,命题公式是由命题常项、命题变项、联结词、括号组成的特殊符号串,通常用大写字母表示。命题公式的严格定义单个命题变项p,q,r,...p,q,r,...p,q,r,...是命题公式多个命题公式通过联结词有限次的组合而成的符号串是命题公式在命题逻辑中命题公式又称合式公式,简称为公式。命题公式的...
原创
1712阅读
0评论
1点赞
发布博客于 2 年前

数理逻辑—命题符号化及联结词

命题符号化及联结词命题的定义能判断真假的陈述句为命题命题是具有唯一真值的陈述句从以上两个定义可知,判断一个句子是否为命题,首先要看它是否为陈述句,然后在看它的真值是否唯一。对命题有关概念的部分名词解释:命题的真值:即判断的可能结果,“真"与"假”真命题:真值为真的命题假命题:真值为假的命题真值的取值:即"真"或"假"其中之一命题常项与变项命题常项与变项的定义:对于简...
原创
2040阅读
0评论
3点赞
发布博客于 2 年前

使用matplotlib库画线段

import matplotlib.pyplot as plt# 线段中两点的坐标如示例中# x=[[1,1],...] y=[[3.5,0],...]# 即标了点(1,3,5)与点(1,0),之后使用plot()函数连接两点x = [[1, 1], [2, 2],[3, 3], [4, 4]]y = [[3.5, 0], [0.5, 1],[2.5, 0], [0, 15.5]]...
原创
5349阅读
1评论
2点赞
发布博客于 2 年前