基本积分表

24个基本积分:

∫ k d x = k x + C \int k dx = kx + C kdx=kx+C

∫ x u d x = x u + 1 u + 1 + C \int x^u dx = \frac{x^{u+1}}{u+1} + C xudx=u+1xu+1+C

∫ 1 x d x = ln ⁡ ∣ x ∣ + C \int\frac{1}{x}dx = \ln|x| + C x1dx=lnx+C

∫ 1 1 + x 2 d x = arctan ⁡ x + C = − a r c c o t x + C \int \frac{1}{1+x^2}dx = \arctan x + C = -arccot x + C 1+x21dx=arctanx+C=arccotx+C
∫ 1 1 − x 2 = arcsin ⁡ x + C = − arccos ⁡ x + C \int \frac{1}{\sqrt{1-x^2}} = \arcsin x +C = -\arccos x + C 1x2 1=arcsinx+C=arccosx+C

∫ cos ⁡ x d x = sin ⁡ x + C \int \cos xdx = \sin x +C cosxdx=sinx+C
∫ sin ⁡ x d x = − cos ⁡ x + C \int \sin xdx = -\cos x + C sinxdx=cosx+C

∫ 1 c o s 2 x d x = ∫ sec ⁡ 2 x d x = tan ⁡ x + C \int \frac{1}{cos^2x}dx = \int \sec^2 xdx = \tan x + C cos2x1dx=sec2xdx=tanx+C
∫ 1 s i n 2 x d x = ∫ csc ⁡ 2 x d x = − cot ⁡ x + C \int \frac{1}{sin^2x}dx = \int \csc^2 xdx = -\cot x + C sin2x1dx=csc2xdx=cotx+C

∫ sec ⁡ x tan ⁡ x d x = sec ⁡ x + C \int \sec x\tan xdx = \sec x + C secxtanxdx=secx+C
∫ csc ⁡ x cot ⁡ x d x = − csc ⁡ x + C \int \csc x\cot xdx = -\csc x + C cscxcotxdx=cscx+C

∫ e x d x = e x + C \int e^xdx = e^x + C exdx=ex+C
∫ a x d x = a x ln ⁡ a + C \int a^xdx = \frac{a^x}{\ln a} + C axdx=lnaax+C

∫ s h x d x = c h x + C \int sh xdx = chx + C shxdx=chx+C
∫ c h x d x = s h x + C \int ch xdx = shx + C chxdx=shx+C

∫ tan ⁡ x d x = − ln ⁡ ∣ cos ⁡ x ∣ + C \int \tan xdx = -\ln|\cos x| + C tanxdx=lncosx+C
∫ cot ⁡ x d x = ln ⁡ ∣ sin ⁡ x ∣ + C \int \cot xdx = \ln|\sin x| + C cotxdx=lnsinx+C
∫ sec ⁡ x d x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C \int \sec xdx = \ln|\sec x + \tan x| + C secxdx=lnsecx+tanx+C
∫ csc ⁡ x d x = ln ⁡ ∣ c s c x − cot ⁡ x ∣ + C \int \csc xdx = \ln|csc x - \cot x| + C cscxdx=lncscxcotx+C

∫ 1 x 2 + a 2 d x = 1 a arctan ⁡ x a + C \int \frac{1}{x^2 + a^2}dx = \frac{1}{a}\arctan \frac{x}{a} + C x2+a21dx=a1arctanax+C
∫ 1 x 2 − a 2 d x = 1 2 a ln ⁡ ∣ x − a x + a ∣ + C \int \frac{1}{x^2 - a^2}dx = \frac{1}{2a}\ln|\frac{x - a}{x+a}| + C x2a21dx=2a1lnx+axa+C

∫ 1 a 2 − x 2 d x = arcsin ⁡ x a + C \int \frac{1}{\sqrt{a^2 - x^2}}dx = \arcsin \frac{x}{a} + C a2x2 1dx=arcsinax+C
∫ 1 x 2 + a 2 d x = ln ⁡ ( x + x 2 + a 2 ) + C \int \frac{1}{\sqrt{x^2 + a^2}}dx = \ln(x + \sqrt{x^2 + a^2}) + C x2+a2 1dx=ln(x+x2+a2 )+C
∫ 1 x 2 − a 2 d x = ln ⁡ ∣ x + x 2 − a 2 ∣ + C \int \frac{1}{\sqrt{x^2 - a^2}}dx = \ln|x + \sqrt{x^2 - a^2}| + C x2a2 1dx=lnx+x2a2 +C

两个由基本积分②推导的常用积分
∫ 1 x d x = 2 x + C \int \frac{1}{\sqrt{x}}dx = 2\sqrt{x} + C x 1dx=2x +C
∫ 1 x 2 d x = − 1 x + C \int \frac{1}{x^2}dx = -\frac{1}{x} + C x21dx=x1+C

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:C马雯娟 返回首页