二阶常系数齐次线性微分方程的通解

高等数学 同时被 2 个专栏收录
29 篇文章 6 订阅
30 篇文章 2 订阅

*本文略去了很多证明,只记录结论
*文中的微分方程均指代二阶常系数线性微分方程

二阶常系数齐次线性微分方程的形式为:
a y ′ ′ + b y ′ + c y = 0 ay'' + by' + cy = 0 ay+by+cy=0
由于是二阶线性微分方程,所以它有两个解,记为 y 1 、 y 2 y_1、y_2 y1y2,若 y 1 y 2 ≠ C \frac{y_1}{y_2} \neq C y2y1̸=C(即两个解之比不为常数),则 y 1 、 y 2 y_1、y_2 y1y2线性无关,那么微分方程的通解为:
y = C 1 y 1 + C 2 y 2 y = C_1y_1 + C_2y_2 y=C1y1+C2y2

我们可以通过微分方程的特征方程来计算微分方程的两个解:
对于微分方程: a y ′ ′ + b y ′ + c y = 0 ay'' + by' + cy = 0 ay+by+cy=0

它的特征方程为: a r 2 + b r + c = 0 ar^2 + br + c = 0 ar2+br+c=0(微分方程的n阶导对于特征方程的n次幂)

写出微分方程的特征方程后即可以用求根公式求出特征方程的解:
r 1 , 2 = − b ± Δ 2 a , Δ = b 2 − 4 a c r_{1, 2} = \frac{-b\pm \sqrt{\Delta}}{2a}, \Delta = b^2 - 4ac r1,2=2ab±Δ Δ=b24ac
以下分情况讨论:
①当 Δ > 0 \Delta > 0 Δ>0时, r 1 、 r 2 r_1、r_2 r1r2是两个不相等的实根 r 1 = − b + Δ 2 a , r 2 = − b − Δ 2 a r_{1} = \frac{-b+\sqrt{\Delta}}{2a},r_{2} = \frac{-b- \sqrt{\Delta}}{2a} r1=2ab+Δ r2=2abΔ

微分方程的通解为: y = C 1 e r 1 x + C 2 e r 2 x y = C_1e^{r_1x} + C_2e^{r_2x} y=C1er1x+C2er2x
②当 Δ = 0 \Delta = 0 Δ=0时, r 1 、 r 2 r_1、r_2 r1r2是两个相等的实根 r 1 = r 2 = − b 2 a r_1 = r_2 = -\frac{b}{2a} r1=r2=2ab

微分方程的通解为: y = C 1 e r 1 x + C 2 x e r 2 x y = C_1e^{r_1x} + C_2xe^{r_2x} y=C1er1x+C2xer2x
③当 Δ &lt; 0 \Delta &lt; 0 Δ<0时, r 1 、 r 2 r_1、r_2 r1r2是一对共轭复根 r 1 = α + β i , r 2 = α − β i r_1 = \alpha + \beta i, r_2 = \alpha - \beta i r1=α+βir2=αβi其中 α = − b 2 a , β = − Δ 2 a \alpha = -\frac{b}{2a}, \beta = \frac{\sqrt{-\Delta}}{2a} α=2abβ=2aΔ

微分方程的通解为: y = e a x ( C 1 cos ⁡ β x + C 2 sin ⁡ β x ) y = e^{ax}(C_1\cos \beta x + C_2\sin \beta x) y=eax(C1cosβx+C2sinβx)

  • 43
    点赞
  • 0
    评论
  • 73
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:马嘣嘣 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值