- 博客(3)
- 资源 (6)
- 论坛 (1)
- 问答 (1)
- 收藏
- 关注

原创 RecSim 可配置的推荐系统仿真平台 使用指南
RecSim是一个可配置平台,用于为自然支持顺序交互的推荐系统(RS)编写仿真环境 与用户。RecSim允许创建新的环境,该环境以抽象级别反映用户行为和项目结构的特定方面,非常适合在顺序交互式推荐问题中突破当前强化学习(RL)和RS技术的限制。可以轻松配置各种环境,这些环境可以改变以下假设:用户偏好和项目熟悉度;用户潜在状态及其动态;选择模型和其他用户响应行为。我们概述了RecSim如何为RL和RS研究人员和从业者提供价值,以及它如何充当学术与工业合作的工具。有关RecSim体系结构的详细说明,请阅读Ie等
2021-01-09 13:47:34
4840
3
翻译 深度强化学习综述论文 A Brief Survey of Deep Reinforcement Learning
A Brief Survey of Deep Reinforcement Learning深度强化学习的简要概述作者:Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, Anil Anthony Bharath文章目录摘要 Abstract1. 引言 Introduction2. 奖励驱动行为 Reward-Driven Behavior2.1. 马尔科夫决策过程 Markov Decision Processes2.2. 强化学习的挑
2021-01-28 11:32:30
137
1
原创 强化学习——表格法 Tabular Methods
本博客将介绍最简单的表格型方法(tabular methods)来讲解如何使用value-based方法求解强化学习过程。文章目录1. 马尔科夫决策过程 MDP1.1. 基于模型的马尔科夫决策过程 Model-based1.2. 无模型的马尔科夫决策过程 Model-free1.3. 基于模型与无模型的对比2. Q表格 Q-table3. 无模型预测 Model-free Prediction1. 马尔科夫决策过程 MDP强化学习有三个要素:状态、动作和奖励。强化学习Agent跟环境是一步一步交互.
2021-01-01 20:32:37
121
白水你一定要努力啊的留言板
发表于 2020-01-02 最后回复 2020-01-02
机器学习到底要不要大数据的支持,如果要数据的支持,支持到哪一步?
2017-12-16
TA创建的收藏夹 TA关注的收藏夹
TA关注的人 TA的粉丝